Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607507

RESUMO

This study delves into the transformative effects of atmospheric cold plasma (CP) treatment on little millet flour (LMF), specifically exploring alterations in bioactive compounds, antinutritional factors, and functional properties. Foaming and emulsification properties experienced noteworthy enhancements with plasma treatment, manifesting in significant increases in foaming capacity (up to 51.47 ± 0.49%), foaming stability, emulsification ability, and emulsion stability (up to 47.02 ± 0.35%). The treatment also positively influenced water absorption index and swelling power. Antinutritional factors, including tannins and saponins, exhibited substantial reductions following plasma treatment. Saponin content, for instance, decreased by an impressive 58% after exposure to 20 kV for 20 min. Conversely, bioactive compounds such as phenolic content and antioxidant activity saw significant increases. Total phenolic content (TPC) rose from 527.54 ± 8.94 to 575.82 ± 3.58 mg GAE/100 g, accompanied by a remarkable 59% boost in antioxidant activity. Interestingly, plasma treatment did not exhibit a discernible effect on pasting properties. These findings collectively underscore the potential of atmospheric CP treatment as a novel and effective method for enhancing the functional and nutritional attributes of LMF, thereby opening new avenues for its application in food science and technology.

2.
Food Chem X ; 22: 101266, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38486618

RESUMO

Non-thermal technologies, primarily employed for microbial inactivation and quality preservation in foods, have seen a surge in interest, with non-thermal plasma garnering particular attention. Cold plasma exhibits promising outcomes, including enhanced germination, improved functional and rheological properties, and microorganism destruction. This has sparked increased exploration across various domains, notably in hydration and rheological properties for creating new products. This review underscores the manifold benefits of applying cold plasma to diverse food materials, such as cereal and millet flours, and gums. Notable improvements encompass enhanced functionality, modified color parameters, altered rheological properties, and reduced anti-nutritional factors. The review delves into mechanisms like starch granule fragmentation, elucidating how these processes enhance the physical and structural properties of food materials. While promising for high-quality food development, overcoming challenges in scaling up production and addressing legal issues is essential for the technology's commercialization.

3.
J Food Sci Technol ; 61(2): 311-319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196706

RESUMO

Kadamb is a unique and underutilized fruit having rich nutritional profile. The utilization of kadamb fruit in value addition is very limited. In this study, pasta was made using kadamb fruit powder (KFP). The effect of fortification of KFP on the quality parameters (color, solid loss, percent expansion, hardness, bulk density, and overall acceptability) of pasta was studied. Pasta was prepared using semolina as the base ingredient, and various proportions of KFP (ranging from 0 to 20%) were added for fortification. Dietary fiber and calcium contents of dry pasta were increased from 5.21 ± 0.02 to 15.36 ± 0.02 and 17.57 ± 0.15 to 37.97 ± 0.03, respectively. As the proportion of KFP increased, the cooking time, hardness, and percent solid loss of the cooked pasta also increased. The highest values for overall acceptability, hardness, cooking solid loss, and bulk density were achieved with 10% KFP and 90% semolina were 7.93 ± 0.41, 19.92 ± 0.21 N, 6.30 ± 0.46%, and 331.67 ± 9.60 kg/m3 respectively. Percent expansion of the pasta was noted to be around 98.33 ± 6.5%. The optimal proportion of KFP was found to be 10% for achieving the best overall quality attributes. FTIR (Fourier-transform infrared spectroscopy) and SEM (scanning electron microscopy) analyses were conducted on the pasta, confirming the presence of functional groups and revealing structural changes due to fiber content of KFP. KFP can be used to create functional and nutritious food products, and further research could explore its application in other food formulations as well.

4.
Int J Biol Macromol ; 254(Pt 3): 126887, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709230

RESUMO

The discharge of high-strength wastewater from the fish-processing industries, comprising undefined blends of toxic and organic compounds, has always been a subject of great disquiet worldwide. Despite a large number of effluent treatment methodologies known to date, biosorption with the aid of naturally grown microalgae has been recognized recently to possess promising outcomes in eradicating pollutants comprising organic compounds from liquid effluents. Interestingly, the microalgal biomass harvested from phytoremediation of fish effluent was identified to be abundant in bio compounds that exhibited potential application in pharmaceutical, nutraceutical, and, aquaculture feed, generating a circular economy. In this context, the focus of the review is to emphasize the applications of microalgal species as naturally occurring and zero-cost adsorbents for the elimination of organic contaminants from fish liquid effluents. The summary of the literature encompassed in this work is supposed to benefit the readers to comprehend the primary mechanisms by which microalgae uptakes the organic matter from fish processing effluents and converts them into various biological molecules. From the scientific works assessed through this review, the most promising microalgae species regards to nutrient uptake and removal efficiency from fish effluent, were identified as Chlorella sp. > Spirulina sp. > Scenedesmus sp. The review further revealed supercritical fluid extraction as the robust extraction tool for the extraction of targeted bioproducts from microalgal biomass grown within fish effluents. Eventually, the information presented through this review establishes phytoremediation using microalgal biomass to be a natural cost-effective, sustainable circular bio-economy approach that could be robustly applied for the efficient treatment of wastewater discharged from food processing industries.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Biomassa , Aquicultura/métodos
5.
Crit Rev Food Sci Nutr ; 63(6): 719-752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34309440

RESUMO

Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.


Assuntos
Frutas , Verduras , Frutas/química , Antioxidantes/análise , Solventes
6.
Food Chem (Oxf) ; 5: 100132, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36105752

RESUMO

The effect on functional properties of kodo millet flour was studied using multipin cold plasma electric reactor. The analysis was carried out at various levels of voltage (10-20 kV) and treatment time (10-30 min) for four different parameters such as water absorption capacity (WAC), oil absorption capacity (OAC), solubility index (SI) and swelling capacity (SC). Response surface methodology (RSM) and artificial neural network - genetic algorithm (ANN - GA) were adopted for modelling and optimization of process variables. The optimized values obtained from RSM were 20 kV and 17.9 min. On the contrary, 17.5 kV and 23.3 min were the optimized values obtained from ANN - GA. The RSM optimal values of WAC, OAC, SI and SC were 1.51 g/g, 1.40 g/g, 0.06 g/g and 3.68 g/g whereas optimized ANN - GA values were 1.51 g/g, 1.50 g/g, 0.06 g/g and 4.39 g/g, respectively. Infrared spectra, peak temperature, diffractograms and micrographs of both optimized values were analyzed and showed significant differences. ANN showed a higher value of R2 and lesser values of other statistical parameters compared to RSM. Therefore, ANN - GA was treated as the best model for optimization and modelling of cold plasma treated kodo millet flour. Hence, the ANN - GA optimized values of cold plasma treated flour could be utilized for practical applications in food processing industries.

7.
Food Chem ; 369: 130898, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455326

RESUMO

This review summarizes the use of spectroscopic processes-based analytical tools coupled with chemometric techniques for the identification of adulterants in edible oil. Investigational approaches of process analytical tools such asspectroscopy techniques, nuclear magnetic resonance (NMR), hyperspectral imaging (HSI), e-tongue and e-nose combined with chemometrics were used to monitor quality of edible oils. Owing to the variety and intricacy of edible oil properties along with the alterations in attributes of the PAT tools, the reliability of the tool used and the operating factors are the crucial components which require attention to enhance the efficiency in identification of adulterants. The combination of process analytical tools with chemometrics offers a robust technique with immense chemotaxonomic potential. These involves identification of adulterants, quality control, geographical origin evaluation, process evaluation, and product categorization.


Assuntos
Alimentos , Óleos de Plantas , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes
8.
Food Chem ; 344: 128573, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33199117

RESUMO

The rising awareness about the adverse health effects of high sugar consumption has led to regulatory amendments for triggering sugar reduction in food products. Sugar reduction in yogurt is a challenging endeavor due to the changes in taste, flavor, texture, maintenance of food functionality, shelf-life, cost and consumer acceptability. A review of the scientific literature, patents, and web articles revealed several approaches being explored by the dairy industry to reduce the sugar addition. A careful assessment of these strategies and their critical analysis is presented in this review. The strategies for sugar reduction involve multifaceted approaches including the use of alternative low-calorie sweeteners, honey, fruit preparations, novel cultures, lactase addition, inulin fiber addition, and flavor interventions. Much of the work so far has focused on development of low-calorie alternative sweeteners, and novel sweeteners-based solutions are evolving. The use of food structuring approaches remains to be explored for sugar reduction in yogurt.


Assuntos
Edulcorantes/análise , Iogurte/análise , Produtos Biológicos/análise , Humanos , Paladar
9.
Food Res Int ; 126: 108654, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732065

RESUMO

Food powders are appreciated worldwide, as it enables food to be preserved for an extended period without significant loss of quality, even under the ambient storage condition. However, it is evidenced that the development of resistant microbial spore and viable microbial cells is a matter of concern even in low moisture foods like food powders. For microbial inactivation, the strategy generally applied is the implication of conventional preservation methods, such as heat treatment which is greatly accompanied by degradation of nutritional organoleptic properties. To overcome the shortcomings of conventional thermal processing, a set of advanced or emerging technologies are being developed which can inactivate the microbial spores and viable microbial cells capable of surviving with maximum retention in the nutritional or organoleptic profile. The examples include infrared heating, microwave heating, radiofrequency heating, instant control pressure drop technology, high-pressure processing, pulsed electric field, pulsed light, ozone processing, and cold plasma. In this review, the potential of different advanced thermal and non-thermal technologies towards the inactivation of spores and viable cells of microorganisms in food powders has been highlighted precisely along with their mechanism of action. The summary of the literature encompassing the use of different processing techniques will help the readers to understand the underlying mechanism of microbial inactivation associated with each processing techniques applied to powders. Eventually, this information will help them to select the suitable technique (individual or in combination with another counterpart) to inactivate spores and viable cells in a specific food powder.


Assuntos
Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Alimentos em Conserva/microbiologia , Temperatura Alta , Conservação de Alimentos/métodos , Raios Infravermelhos , Viabilidade Microbiana , Micro-Ondas , Pressão , Ondas de Rádio , Esporos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...